Previous Lecture | lect13 | Next Lecture |
lect13, Thu 02/20
Eigenvalues, eigenvectors, graphs, and matrices
Reading assignment
For next Tuesday, read NCM Sections 7.1 through 7.4 (ODEs).
Outline for this week’s lectures, with references
1) Eigenvalues and eigenvectors (NCM Sections 10.1, 10.2, 10.5; Gil Strang video lecture number 21).
2) Graphs and adjacency matrices (Lecture slides; Wolfram article “adjacency matrix”, but note that for a directed graph each edge (v,w) only makes A[w,v] == 1, and not A[v,w]).
3a) PageRank: The eigenvalue connection ($25B paper Sections 1, 2.1).
3b) PageRank: Modifying the matrix to make it work ($25B paper Sections 2.2, 3.1).
4a) Computing the eigenvector by the power method ($25B paper Section 4).
4b) The power method with a sparse matrix (Homework h06).
Outline of today’s lecture
- Intuition for PageRank as an eigenvalue problem
- Modifying the matrix to make the intuition work
- Column scaling (and column stochastic matrices)
- Dealing with dangling vertices
- Making the graph strongly connected: The 15% solution
- Computing the eigenvector: the power method
- Example: harvard.edu web crawl
-
Example: a million-page web crawl
- numpy/scipy routines:
- spla.eig()
- np.sum()
- np.sort()
- np.argsort()
- np.argmax()
- cs111 routines:
- cs111.pagerank1()