
CS 111: Homework 8: Due by 11:59 pm Wednesday, March 11, 2020

Submit your paper as one PDF file, and tell GradeScope which page(s) each problem is on.

1. This problem is about another connection between graphs, matrices, and eigenvalues. This time
the graph in question is undirected, with no arrows on its edges. Let G be an undirected graph with n
vertices, which we take to be the integers 0 through n− 1. An edge of G is an unordered pair of integers
(i, j). We assume that G has no multiple edges (that is, edge (i, j) only occurs once) and no loops (that
is, no edges (i, i)).

The Laplacian matrix of G is the n-by-n matrix L whose diagonal element L[i, i] is the number of
neighbors of vertex i (also called the degree of vertex i), and whose off-diagonal element L[i, j] is −1 if (i, j)
is an edge of G and is 0 otherwise. For example, the Laplacian matrix of the graph consisting of 4 vertices
connected in a square (also called a 4-cycle) is

L =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 , where G =

0 1

23

The Laplacian matrix is symmetric because the graph is undirected. It’s a theorem that all the eigenvalues
of any symmetric real matrix are real numbers, and it’s also a theorem that all the eigenvalues of the
Laplacian matrix of a graph are greater than or equal to zero.

1.1. Use linalg.eigh() (note the h!) to find the four eigenvalues of the Laplacian matrix of the
4-cycle as above. You should find that they are all nonnegative real numbers, and that one of them is
equal to zero.

1.2. In fact, zero is an eigenvalue of the Laplacian matrix of every graph. Prove this by exhibiting an
n-vector v(0) that is an eigenvector for the eigenvalue zero for every n-vertex graph, and explaining why
Lv(0) = 0v(0).

1.3. Given an n-vertex graph G and any n-vector v, we can think of the n elements of the vector v
as labels for the n vertices of the graph; v[0] labels vertex 0, v[1] labels vertex 1, and so forth. Used as
labels in this way, the eigenvectors of the Laplacian matrix of a graph are in some ways analogous to the
fundamental modes of vibration of a physical object.

For example, let Pn be the graph with n vertices joined in a single path, so that Pn has the n− 1 edges
{(0, 1), (1, 2), . . . , (n − 2, n − 1)}. Write a python function path(n) that computes the n-by-n Laplacian
matrix Ln of the graph Pn as a numpy array. Show your function, and show its output for n = 5 as an
example. Also show the output of linalg.eigh() on L5.

Now we’ll see how the Laplacian eigenvectors of the graph Pn correspond to “modes of vibration.” The
idea is to think of the path Pn as a violin string. Use your function path() to compute the Laplacian matrix

1

L100 of the graph P100. Then use linalg.eigh() to compute the eigenvalues d0, . . . , d99 and eigenvectors
v(0), . . . , v(99) of the matrix L100. Check to see whether the eigenvalues come out of linalg.eigh() in
increasing order of size; if not, reorder both the eigenvalues and eigenvectors so that d0 ≤ d1 ≤ · · · ≤ d99.
Don’t print out L100 or the lists of eigenvalues and eigenvectors, but make and turn in the following three
plots (all nicely labeled, of course):

• Plot the 100 elements v
(0)
0 , v

(0)
1 , . . . , v

(0)
99 of the eigenvector v(0) (this is a pretty simple picture).

• Make one plot that has 4 lines on it, plotting the elements of each eigenvector v(1) through v(4).

• Plot the 100 eigenvalues di versus i.

1.4. How close is the temperature matrix to being a Laplacian matrix? Specifically, which (and how
many) of the nonzero elements of the 2D temperature matrix with k = 100 would you need to change to
make it into the Laplacian matrix of some graph? Can you describe in words what that graph is?

2. An important problem in classical mechanics is to determine the motion of two bodies under mutual
gravitational attraction. Suppose that a body of mass m is orbiting a second body of much larger mass M ,
such as the earth orbiting the sun. From Newton’s laws of motion and gravitation, the orbital trajectory
(x0(t), x1(t)) is described by the system of second-order ODEs

ẍ0 = −GMx0/r
3, (1)

ẍ1 = −GMx1/r
3, (2)

where G is the gravitational constant and r = (x20 +x21)
1/2 = ||x|| is the distance of the orbiting body from

the center of mass of the two bodies. For this experiment, we choose units such that GM = 1.

2.1. Use integrate.solve ivp() to solve this system of ODEs with the initial conditions

x0(0) = 1− ε, x1(0) = 0, (3)

ẋ0(0) = 0, ẋ1(0) =
(1 + ε

1− ε

)1/2
, (4)

where ε is the eccentricity of the resulting elliptical orbit, which has period 2π. Try the values ε = 0 (which
should give a circular orbit), ε = 0.5, and ε = 0.9. For each case, solve the ODE for at least one orbital
period and obtain output at enough intermediate points to draw a smooth plot of the orbital trajectory.
Make separate plots of x0 versus t, x1 versus t, and x0 versus x1, all with well-labeled axes and clear titles.
For your plot of the orbit itself, x0 versus x1, use plt.gca().axis(’equal’) to make sure the scale is the
same on both axes, so that a circle will look like a circle.

Experiment with different error tolerances (use help(integrate.solve ivp) to find out how to set
error tolerances) to see how they affect (i) the amount of time required for the solution and (ii) how close
the orbit comes to being closed. If you trace the orbit through several periods, does the orbit tend to

2

wander or remain steady? In addition to your plots, turn in an explanation in English of what experiments
you did, what you observed, and what your conclusions were.

2.2. Physics tells us that the orbit described by this ODE (like any closed physical system) should
conserve both energy and angular momentum. Check your numerical solutions from part (a) to see how
well the following quantities remain constant throughout time.

Conservation of energy:
ẋ20 + ẋ21

2
− 1

r

Conservation of angular momentum:
x0ẋ1 − x1ẋ0

Present your results using whatever numbers or graphs you think are most informative, and describe
your conclusions in English.

3

