CS 111: Homework 2: Due by 11:59pm Monday, January 20

Submit your homework online as a PDF file to GradeScope, and tell GradeScope which page(s) contain each problem.

1. Consider the code for the temperature problem in the lecture file temperature.py, especially the routines make_A() and make_b() that create the matrix A and right-hand side b. Experiment with different ways of setting the boundary conditions, which are the parameters top, bottom, left, and right to make_b(). Make a plot of the most interesting result that you get (in your opinion), and explain how you got it. If you want, you can also experiment with matplotlib to make a more interesting plot of your result. (The CS 111 logo on the course web page was obtained this way in 2010; maybe we can get a new logo this year!)
2. Again consider the routines make_A() and make_b() that create the matrix A and right-hand side b for the temperature problem. Let $k=100$.

2a. How many elements are there in b ?
2b. Considering all possible choices for the temperatures on the boundary, what is the largest number of elements of b that could possibly be nonzero?

2c. Explain why the rest of the elements of b are zero, no matter what the boundary temperatures are.
3. Write the following matrix in the form $A=L U$, where L is a unit lower triangular matrix (that is, a lower triangular matrix with ones on the diagonal) and U is an upper triangular matrix.

$$
A=\left(\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 4 & -1 \\
-1 & -1 & 4
\end{array}\right)
$$

4. The following three statements are all false. For each one, give a counterexample consisting of a 3-by-3 matrix or matrices, and show the computation that proves that the statement fails.

4a. If P is a permutation matrix and A is any matrix, then $P A=A P$.
4b. If matrix A is nonsingular, then it has a factorization $A=L U$ where L is lower triangular and U is upper triangular.

4c. The product of two symmetric matrices is a symmetric matrix.

5a. Consider the permutation matrix

$$
P=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Find a 4 -element permutation vector $\mathrm{v}=\mathrm{np}$.array (something) such that, for every 4 -by- 4 matrix A, we have $A[v,:]==P$ @ A. Test your answer by running a few lines of Python, and turn in the result.

5b. For the same P, find a 4 -element permutation vector $\mathrm{w}=\mathrm{np}$.array (something) such that, for every 4-by-4 matrix A, we have $\mathrm{A}[:, \mathrm{w}]==\mathrm{A} @ \mathrm{P}$. Test your answer and turn in the result.
6. Write Usolve(), analogous to Lsolve() in the lecture file LU.py, to solve an upper triangular system $U x=y$. Warning: Notice that, unlike in Lsolve(), the diagonal elements of U don't have to be equal to one. Test your answer, both by itself and with LUsolve(), and turn in the result. Hint: Loops can be run backward in Python, say from $n-1$ down to 0 , by writing

```
for i in reversed(range(n)):
```

