Previous Lecture | lect09 | Next Lecture |
lect09, Mon 02/11
Eigenvalues, eigenvectors, graphs, and matrices
Reading assignment
For this week, read NCM Sections 10.1, 10.2, and 10.5, and “The $25,000,000,000 Eigenvector”.
References for today’s lecture
NCM Sections 10.1 and 10.2, and the first part of the $25 billion eigenvector paper.
Outline
- Interesting matrices
- symmetric matrices and (complex) hermitian matrices
- adjacency matrices of graphs
- Eigenvalues and eigenvectors
- general matrices
- symmetric and hermitian matrices
-
Graphs and matrices
- numpy/scipy routines
- np.load()
- np.save()
- np.random.randn()
- np.count_nonzero()
- np.ones()
- np.sum()
- np.sort()
- np.argsort()
- linalg.eig()
- linalg.eigh()