
CS 111: Homework 7: Due by 6:00pm Friday, March 1

Homework must be submitted online as a PDF file to GradeScope. When you turn in your homework, tell
GradeScope which page(s) contain each problem. Doing this correctly will be worth 2 points.

1. (Compare NCM problem 1.38.) The moral of this problem is that, with floating-point arithmetic,
sometimes two algorithms look equivalent but one is better than the other at getting an accurate answer.
Suppose you have a number x̂ that is an approximation to another number x. Define the relative error in
x̂ as |(x̂− x)/x|. (This only makes sense if x 6= 0.)

1a. The classic quadratic formula says that the two roots of the quadratic equation

ax2 + bx+ c = 0

are

x0, x1 =
−b±

√
b2 − 4ac

2a
.

Use this formula in numpy (show your input and output) to compute both roots for

a = 1, b = 10,000,000,000, c = 1.

Also compute the roots two other ways: first with numpy’s np.roots(), and then by hand. To at least one
significant digit, what is the relative error of the approximation computed using the quadratic formula to
x0? To x1? What are the relative errors of the approximations computed using np.roots()?

1b. You should have found in (1a) that the classic formula is good for computing one root but not
the other. Explain in a sentence why in this case one root isn’t computed accurately. Hint: The answer
involves IEEE floating-point arithmetic!

1c. Use the classic formula to compute one root accurately, and then use the fact that

x0x1 =
c

a

to compute the other. What are the relative errors now?

2. The standard form of a first-order ODE initial value problem is

ẏ = f(t, y), y(t0) = y0,

where t is a scalar and y is a vector. Write each of the following ODEs as an equivalent first-order system
of ODEs in standard form:

2a. Van der Pol equation:
d2x

dt2
= (1− x2)dx

dt
− x.

2b. Blasius equation:
d3x

dt3
= −xdx

dt
.

1

2c. Newton’s second law of motion for a two-body problem in 2 dimensions (G and M are constants):

d2x0
dt2

= −GM x0

(x20 + x21)
3/2

, (1)

d2x1
dt2

= −GM x1

(x20 + x21)
3/2

. (2)

3. (Compare NCM problem 7.16.) This problem is partly about ODEs and partly about making nice
plots with matplotlib (we import matplotlib.pyplot as plt).

Many modifications of the Lotka–Volterra predator-prey model that we saw in class on February 20
have been proposed to more accurately reflect what happens in nature. For example, the number of rabbits
can be prevented from growing indefinitely by fixing a maximum number R and changing the equations to

dr

dt
= 2
(

1− r

R

)
r − αrf, (3)

df

dt
= −f + αrf, (4)

where t is time, r(t) is the number of rabbits, f(t) is the number of foxes, and α > 0 is a constant. This
makes dr/dt negative whenever r > R, which guarantees that the number of rabbits can never grow to
exceed R.

For α = 0.01, compare the behavior of the original model with the behavior of this modified model
with R = 400. Solve the equations (using integrate.solve ivp() as we did in class) over 50 units of
time, assuming that there are initially 300 rabbits and 150 foxes. Make four different plots to show the
solutions and the phase space diagrams for both models as follows:

• number of foxes and rabbits (on the same plot) versus time for the original model,

• number of foxes and rabbits (on the same plot) versus time for the modified model,

• number of foxes versus number of rabbits (phase space) for the original model,

• number of foxes versus number of rabbits (phase space) for the modified model.

For all plots, label all curves (with plt.legend()) and all axes, and put a title on each plot that identifies
it clearly. For the phase space plots, set the aspect ratio so that equal increments on the x- and y-axes are
equal in size. (You may find the matplotlib tutorial linked under the “help” menu in Jupyter useful.)

4. This problem is about another connection between graphs, matrices, and eigenvalues. This time
the graph in question is undirected, with no arrows on its edges. Let G be an undirected graph with n
vertices, which we take to be the integers 0 through n− 1. An edge of G is an unordered pair of integers
(i, j). We assume that G has no multiple edges (that is, edge (i, j) only occurs once) and no loops (that
is, no edges (i, i)).

The Laplacian matrix of G is the n-by-n matrix L whose diagonal element L[i, i] is the number of
neighbors of vertex i (also called the degree of vertex i), and whose off-diagonal element L[i, j] is −1 if (i, j)
is an edge of G and is 0 otherwise. For example, the Laplacian matrix of the graph consisting of 4 vertices
connected in a square (also called a 4-cycle) is

L =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 .

2

The Laplacian matrix is symmetric because the graph is undirected. It’s a theorem that all the eigenvalues
of any symmetric matrix are real numbers, and it’s also a theorem that all the eigenvalues of the Laplacian
matrix of a graph are greater than or equal to zero.

4a. Use linalg.eigh() (note the h!) to find the four eigenvalues of the Laplacian matrix of the 4-cycle
as above. You should find that they are all nonnegative real numbers, and that one of them is equal to
zero.

4b. In fact, zero is an eigenvalue of the Laplacian matrix of every graph. Prove this by exhibiting an
n-vector v(0) that is an eigenvector for the eigenvalue zero for every n-vertex graph, and explaining why
Lv(0) = 0v(0).

4c. Given an n-vertex graph G and any n-vector v, we can think of the n elements of the vector v
as labels for the n vertices of the graph; v[0] labels vertex 0, v[1] labels vertex 1, and so forth. Used as
labels in this way, the eigenvectors of the Laplacian matrix of a graph are in some ways analogous to the
fundamental modes of vibration of a physical object.

For example, let Pn be the graph with n vertices joined in a single path, so that Pn has the n− 1 edges
{(0, 1), (1, 2), . . . , (n − 2, n − 1)}. Write a python function path(n) that computes the n-by-n Laplacian
matrix Ln of the graph Pn as a numpy array. Show your function, and show its output for n = 5 as an
example. Also show the output of linalg.eigh() on L5.

Now we’ll see how the Laplacian eigenvectors of the graph Pn correspond to “modes of vibration.” The
idea is to think of the path Pn as a violin string. Use your function path() to compute the Laplacian matrix
L100 of the graph P100. Then use linalg.eigh() to compute the eigenvalues d0, . . . , d99 and eigenvectors
v(0), . . . , v(99) of the matrix L100. Check to see whether the eigenvalues come out of linalg.eigh() in
increasing order of size; if not, reorder both the eigenvalues and eigenvectors so that d0 ≤ d1 ≤ · · · ≤ d99.
Don’t print out L100 or the lists of eigenvalues and eigenvectors, but make and turn in the following plots
(all nicely labeled, of course):

• Plot the 100 elements v
(0)
0 , v

(0)
1 , . . . , v

(0)
99 of the eigenvector v(0) (this is a pretty simple picture).

• Make one plot that has 6 lines on it, plotting the elements of each of the eigenvectors v(1) through
v(6).

• Plot the 100 eigenvalues di versus i.

4d. How close is the temperature matrix to being a Laplacian matrix? Specifically, which (and how
many) of the nonzero elements of the 2D temperature matrix with k = 100 would you need to change to
make it into the Laplacian matrix of some graph? Can you describe in words what that graph is?

3

