CS 111: Homework 3: Due by 6:00pm Friday, January 25

NEW TURNIN RULES: Homework must be submitted online as a PDF file to GradeScope. When you turn in your homework, tell GradeScope which page(s) of your PDF contain each individual problem. Doing this correctly will be worth 2 points.

1. How many arithmetic operations (total of additions, subtractions, multiplications, divisions) are required to do each of the following? (You can omit lower-order terms in n.)

1a. Compute the sum of two n-vectors?
1b. Compute the product of an n-by- n matrix with an n-vector?
1c. Compute the product of two n-by- n matrices?
1d. Solve an n-by- n upper triangular linear system $U x=y$?
2. Suppose A and B are n-by- n matrices, with A nonsingular, and c is an n-vector. Describe the steps you would use to efficiently compute the product $A^{-1} B c$. Describe a different, less efficient, sequence of steps.
3. Suppose that A is a square, nonsingular, nonsymmetric matrix, b is an n-vector, and that you have called

$$
\mathrm{L}, \mathrm{U}, \mathrm{p}=\operatorname{LUfactor}(\mathrm{A})
$$

(using the routine from the lecture files). Now suppose you want to solve the system $A^{T} x=b$ (not $A x=b$) for x. Show how to do this using calls to Lsolve() and Usolve(), without modifying either of those routines or calling LUfactor() again. Test your method in numpy on a randomly generated 6 -by- 6 matrix (see np.random.rand()).
4. Do problem 2.3 on pages $32-33$ of the NCM book, showing the numpy code you use and its output. Note: To understand intuitively what the problem means by "assume that joint 1 is rigidly fixed both horizontally and vertically and that joint 8 is fixed vertically," think of the truss as a (2-dimensional) drawbridge across a river, with the left end being a hinge and the right end lying on the ground.
5. Consider the linear system

$$
\left(\begin{array}{cc}
\alpha & 1 \\
1 & 1
\end{array}\right)\binom{x_{0}}{x_{1}}=\binom{\alpha+2}{3}
$$

for some $\alpha<1$. Clearly the solution is $\left(x_{0}, x_{1}\right)^{T}=(1,2)^{T}$. For each value of $\alpha=10^{-4}, 10^{-8}, 10^{-16}, 10^{-20}$, solve this system using the routines LUfactor(), Lsolve(), and Usolve() from LUsolve.ipynb in the lecture files. For each α, do this twice, first with pivoting $=$ True in LUfactor() and then with pivoting = False. Show your numpy code and its output. Comment on your results.
6. Recall that a symmetric matrix A is positive definite (SPD for short) if and only if $x^{T} A x>0$ for every nonzero vector x.

6a. Find a 2 -by- 2 matrix A that (1) is symmetric, (2) is not singular, and (3) has all its elements greater than zero, but (4) is not SPD. Show a nonzero vector x such that $x^{T} A x<0$.
$\mathbf{6 b}$. Let B be a nonsingular matrix, of any size, not necessarily symmetric. Prove that the matrix $A=B^{T} B$ is SPD.

