
CS 111: Homework 2: Due by 5:00pm Friday, January 18

1. Consider the code for the temperature problem in Temperature.ipynb, in the Jan 7 lecture files,
especially the routines make A() and make b() that create the matrix A and right-hand side b. Let k = 100.

1a. How many elements are there in b?

1b. Considering all possible choices for the boundary temperatures, what is the largest number of
elements of b that could possibly be nonzero?

1c. Explain why the rest of the elements of b are zero, no matter what the boundary temperatures are.

2. Experiment with the temperature problem, using different ways of setting the boundary conditions.
Make a plot of the most interesting result that you get (in your opinion), and explain how you got it. If
you want (not required) you can experiment with matplotlib to make a more interesting plot of your
result, too. (The CS 111 logo on the course web page was obtained this way in 2010; maybe we can get a
new logo this year!)

3. Write the following matrix in the form A = LU , where L is a unit lower triangular matrix (that is,
a lower triangular matrix with ones on the diagonal) and U is an upper triangular matrix.

A =

 4 −1 −1
−1 4 −1
−1 −1 4


4. The following three statements are all false. For each one, give a counterexample consisting of a

3-by-3 matrix or matrices, and show the computation that proves that the statement fails.

4a. If P is a permutation matrix and A is any matrix, then PA = AP .

4b. If matrix A is nonsingular, then it has a factorization A = LU where L is lower triangular and U
is upper triangular.

4c. The product of two symmetric matrices is a symmetric matrix.

5a. Consider the permutation matrix

P =


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0


Find a 4-element permutation vector v = np.array(something) such that, for every 4-by-4 matrix A, we
have A[v,:] == P @ A. Test your answer by running a few lines of Python, and turn in the result.

5b. For the same P , find a 4-element permutation vector w = np.array(something) such that, for
every 4-by-4 matrix A, we have A[:,w] == A @ P. Test your answer and turn in the result.

6. Write Usolve(), analogous to Lsolve() in the Jan 9 lecture file LUsolve.ipynb, to solve an upper
triangular system Ux = y. Warning: Notice that, unlike in Lsolve(), the diagonal elements of U don’t
have to be equal to one. Test your answer, both by itself and with LUsolve(), and turn in the result.
Hint: Loops can be run backward in Python, say from n− 1 down to 0, by writing

for i in reversed(range(n)):

1


