
CS 111 (S19): Homework 7

Due by 6:00 PM, Wednesday, June 5

NAME and PERM ID No.: Gaucho Olé, 1234567 (replace with yours)

UCSB EMAIL: GauchoOle@ucsb.edu (replace with yours)

1. (Compare NCM problem 1.38.) The moral of this problem is that, with floating-point arith-
metic, sometimes two algorithms look equivalent but one is better than the other at getting an accurate
answer. Suppose you have a number x̂ that is an approximation to another number x. Define the
relative error in x̂ as |(x̂− x)/x|. (This only makes sense if x 6= 0.)

1a. The classic quadratic formula says that the two roots of the quadratic equation

ax2 + bx+ c = 0

are

x0, x1 =
−b±

√
b2 − 4ac

2a
.

Use this formula in numpy (show your input and output) to compute both roots for

a = 1, b = 10,000,000,000, c = 1.

Also compute the roots two other ways: first with numpy’s np.roots(), and then by hand. To at least
one significant digit, what is the relative error of the approximation computed using the quadratic
formula to x0? To x1? What are the relative errors of the approximations computed using np.roots()?

1b. You should have found in (1a) that the classic formula is good for computing one root but
not the other. Explain in a sentence why in this case one root isn’t computed accurately. Hint: The
answer involves IEEE floating-point arithmetic!

1c. Use the classic formula to compute one root accurately, and then use the fact that

x0x1 =
c

a

to compute the other. What are the relative errors now?

2. The standard form of a first-order ODE initial value problem is

ẏ = f(t, y), y(t0) = y0,

where t is a scalar and y is a vector. Write each of the following ODEs as an equivalent first-order
system of ODEs in standard form:

2a. Van der Pol equation:
d2x

dt2
= (1− x2)dx

dt
− x.

2b. Blasius equation:
d3x

dt3
= −xdx

dt
.

1

2c. Newton’s second law of motion for a two-body problem in 2 dimensions (G and M are
constants):

d2x0
dt2

= −GM x0

(x20 + x21)
3/2

, (1)

d2x1
dt2

= −GM x1

(x20 + x21)
3/2

. (2)

3. (Compare NCM problem 7.16.) This problem is partly about ODEs and partly about making
nice plots with matplotlib (we import matplotlib.pyplot as plt).

Many modifications of the Lotka–Volterra predator-prey model that we saw in class have been
proposed to more accurately reflect what happens in nature. For example, the number of rabbits can
be prevented from growing indefinitely by fixing a maximum number R and changing the equations
to

dr

dt
= 2

(
1− r

R

)
r − αrf, (3)

df

dt
= −f + αrf, (4)

where t is time, r(t) is the number of rabbits, f(t) is the number of foxes, and α > 0 is a constant.
This makes dr/dt negative whenever r > R, which guarantees that the number of rabbits can never
grow to exceed R.

For α = 0.01, compare the behavior of the original model with the behavior of this modified model
with R = 400. Solve the equations (using integrate.solve ivp() as we did in class) over 50 units
of time, assuming that there are initially 300 rabbits and 150 foxes. Make four different plots to show
the solutions and the phase space diagrams for both models as follows:

• number of foxes and rabbits (on the same plot) versus time for the original model,

• number of foxes and rabbits (on the same plot) versus time for the modified model,

• number of foxes versus number of rabbits (phase space) for the original model,

• number of foxes versus number of rabbits (phase space) for the modified model.

For all plots, label all curves (with plt.legend()) and all axes, and put a title on each plot that
identifies it clearly. For the phase space plots, set the aspect ratio so that equal increments on the x-
and y-axes are equal in size. (You may find the matplotlib tutorial linked under the “help” menu in
Jupyter useful.)

2

4. An important problem in classical mechanics is to determine the motion of two bodies under
mutual gravitational attraction. Suppose that a body of mass m is orbiting a second body of much
larger mass M , such as the earth orbiting the sun. From Newton’s laws of motion and gravitation,
the orbital trajectory (x0(t), x1(t)) is described by the system of second-order ODEs

ẍ0 = −GMx0/r
3, (5)

ẍ1 = −GMx1/r
3, (6)

where G is the gravitational constant and r = (x20 + x21)
1/2 = ||x|| is the distance of the orbiting body

from the center of mass of the two bodies. For this exercise, we choose units such that GM = 1.

Use integrate.solve ivp() to solve this system of ODEs with the initial conditions

x0(0) = 1− e, x1(0) = 0, (7)

ẋ0(0) = 0, ẋ1(0) =
(1 + e

1− e

)1/2
, (8)

where e is the eccentricity of the resulting elliptical orbit, which has period 2π. Try the values e = 0
(which should give a circular orbit), e = 0.5, and e = 0.9. For each case, solve the ODE for at least one
orbital period and obtain output at enough intermediate points to draw a smooth plot of the orbital
trajectory. Make separate plots of x0 versus t, x1 versus t, and x0 versus x1, all with well-labeled axes
and clear titles. For your plot of the orbit itself, x0 versus x1, use plt.gca().axis(’equal’) to make
sure the scale is the same on both axes, so that a circle will look like a circle.

Experiment with different error tolerances (use help(integrate.solve ivp) to find out how to
set error tolerances) to see how they affect (i) the amount of time required for the solution and (ii)
how close the orbit comes to being closed. If you trace the orbit through several periods, does the
orbit tend to wander or remain steady?

In addition to your plots, turn in an explanation in English of what experiments you did, what
you observed, and what your conclusions were.

3

