CS 111 (S19): Homework 6
Due by 6:00 PM, Wednesday, May 29
NAME and PERM ID No.: Gaucho Olé, 1234567 (replace with yours)
UCSB EMAIL: GauchoOle@ucsb.edu (replace with yours)

1. In class, we computed the PageRank ordering from the adjacency matrix of a directed graph
by applying scipy’s built-in 1linalg.eig() function. The method we used doesn’t work for very large
graphs/matrices, because it forms a completely dense n-by-n matrix M, which requires O(n?) memory
to store and O(n?) time to run linalg.eig(). In this assignment you will write a python code that
works for much larger graphs, using the power method to find the eigenvector, without ever forming
a dense matrix. You will start with a program that we wrote, which uses the power method but still
forms the dense matrix M, and you will modify it so that it doesn’t need the dense matrix.

1

Code and data

The lecture files on the GitHub site for the May 21st lecture include several files that you will use for
this assignment:

PageRank1.ipynb, which is the python code you’ll start from.

PageRankEG1.npy and PageRankEG2.npy, which are the small graphs (as dense adjacency ma-
trices) I used as examples in class.

PageRankEG3.npy, which is the graph of the 500-node Harvard web crawl.
PageRankEG3.nodelabels, which lists the 500 Harvard site names.

PageRankEG*.npz, which are the same graphs as the three above, but are stored as scipy
csr_sparse matrices. You can use these to test your sparse code.

webGoogle.npz, which is the graph of a web crawl of about 900,000 pages.

webGoogle.notes, which is a text file with some info about the big graph.

Here is the result of running pagerank1() on matrix PageRankEG1:

In:

Out:

E = np.load(’PageRankEG1.npy’)

r, v = pagerankl(E, return_vector = True)
print(’r =’, r)

print(C’v =, v)

Dominant eigenvalue is 1.000000 after 19 iterations.

[0 2 3 1]
[0.69648305 0.26828106 0.54477799 0.38230039]

< R
o

And here are the ten top-ranked pages in the Harvard web crawl:

In:

E = np.load(’PageRankEG3.npy’)

sitename = open(’PageRankEG3.nodelabels’).read().splitlines()

r, v = pagerankl(E, return_vector = True)

print(’r[:10] =’, r[:10])

print ()

for i in range(10):

print (’rank %d is page %3d: %s’ % (i, r[il, sitename[r[i]]))

Out:

Dominant eigenvalue is 1.000000 after 56 iterations.

r[:10] = [0O 9 41129 17 14 8 16 45 12]

rank O is page O: http://www.harvard.edu

rank 1 is page 9: http://www.hbs.edu

rank 2 is page 41: http://search.harvard.edu:8765/custom/query.html
rank 3 is page 129: http://www.med.harvard.edu

rank 4 is page 17: http://www.gse.harvard.edu

rank 5 is page 14: http://www.hms.harvard.edu

rank 6 is page 8: http://www.ksg.harvard.edu

rank 7 is page 16: http://www.hsph.harvard.edu

rank 8 is page 45: http://www.gocrimson.com

rank 9 is page 12: http://www.hsdm.med.harvard.edu

The routine you write, pagerank2 (), should be able to duplicate these results, and should also run
correctly on the big web graph. If you run pagerank1 () on the big web graph, Jupyter will either just
hang or complain that it’s out of memory. On a 3-year-old MacBook, our own version of pagerank2 ()
takes about 6 seconds to run on the big web graph. (That’s .35 seconds to load it from disk and 5.41
seconds to analyze it. Interestingly, %time says it used 9.98 seconds of run time, which means that,
under the covers, numpy is doing a pretty good job of using the two cores in that laptop in parallel.)

2 The power method with a dense matrix

Let’s look carefully at pagerank1 (), which is in the file PageRank1.ipynb. The first few lines of code
convert the matrix to a dense array if necessary and check the input for validity. Notice the sneaky
test in the second assert, which verifies that every entry of E is either 0 or 1 without using an explicit
loop or creating any new big matrices.

The section following comment (1.) fills in the empty columns of the matrix, which correspond to
nodes with no outgoing links, by linking them to every other node in the graph. Note the line F[j, j]
= 0 that prevents a node from being linked to itself. The matrix F may have a lot more nonzeros
than E; in your pagerank2(), you don’t want to compute F explicitly.

The next few lines scale the matrix to make it column stochastic, and then create the matrix M
that represents choosing a new node uniformly at random 15% of the time. Matrix M is completely
dense, so you certainly don’t want to compute it explicitly in pagerank2().

Finally, the loop uses the power method to find the largest eigenvalue of M (which we know is equal
to 1 by the Perron-Frobenius theorem) and its associated eigenvector (which gives the PageRank

ratings). The loop just multiplies the vector v by M repeatedly, rescaling it after each multiplication to
have norm 1. The loop stops when the vector changes by less than a tolerance that defaults to 1076,
or when the maximum number of iterations is reached.

The next couple of lines verify that (as promised by the Perron-Frobenius theorem) all the elements
of the dominant eigenvector have the same sign, and make that sign positive. (Note that —v is an
eigenvector whenever v is.)

Finally, we compute the ranking permutation by sorting the eigenvector.

3 Getting rid of the dense matrix

Your pagerank2() should not compute any of the matrices F, A, S, or M. The question is, then,
how do you get the effect of the line “v = M @ v’? You can use the fact that, mathematically,
M = (1 —m)A+ mS, so you can get the effect of multiplying a vector by M if you can multiply it
both by A and by S. Given a vector v, what vector is Sv? How can you compute that vector without
forming S7

Similarly, you can use the fact that A = (E + F')/sum(E + F)) to figure out how to compute Av
from v by multiplying a suitable vector w only by the matrices £ and F'. In the end, the only matrix
you actually need to multiply by is F.

4 What experiments to do

Write and debug a python function pagerank2() that has exactly the same input and outputs as
pagerankl (), but forms no large matrices besides its input matrix E. Verify that your code gets the
right results on the small examples and the Harvard crawl. You can load those examples as sparse ma-
trices by using E = sparse.load npz(’matrixname.npz’) instead of E = np.load(’matrixname.npy’).

Run your code on the big web graph, timing it in Jupyter with %time. You should separately
time loading the matrix from the .npz file on disk and computing the rankings with pagerank2().
What is the largest element in the PageRank vector? What is the smallest? Make a histogram of the
logarithms of the elements of the eigenvector, which are the “importance” ratings.

Which is faster on the Harvard crawl, pagerank2() using PageRankEG3.npz or pagerank1 () using
PageRankEG3.npy?

How does the running time of your pagerank2() compare with the running time of spla.eigs(E)
on the original web graph? (Of course they doesn’t compute the same thing, but it’s interesting to
see how fast scipy’s eigensolver is on a sparse matrix that size.) On our older MacBook, pagerank2 ()
is faster.

5 What to turn in

Include all of the following in your report:

e Your python source code pagerank2(), and any other python code you wrote.

Note: Please submit your code to the track “hw06 code” on GradeScope. The file name must
be pagerank2.py. The function name must be pagerank2. A code file to start with is here.

e Jupyter output from your code duplicating the results in Section 1 above.

e Jupyter output from your code running on the big web graph, with timings from %time, and the
largest and smallest elements of v. (Don’t print out the values of r and v for this one!)

https://github.com/ucsb-cs111/s19-lecture-files/blob/master/05.21/pagerank2.py

e Your histogram, formatted as nicely as you can.

	Code and data
	The power method with a dense matrix
	Getting rid of the dense matrix
	What experiments to do
	What to turn in

