CS 111 (S19): Homework 5
Due by 6:00 PM, Wednesday, May 15
NAME and PERM ID No.: Gaucho Olé, 1234567 (replace with yours)
UCSB EMAIL: GauchoOle@ucsb.edu (replace with yours)

1. The moral of this problem is twofold: First, linear least squares can be used to fit data with
polynomials, not just with straight lines or planes. (As we’ve seen, it can be used to fit data with
lots of different kinds of models.) Second, fitting data with a very high-degree polynomial can be
a bad idea.

The data for this problem is the population of the United States at each 10-year census from
1900 to 2010. Here is the data.

date = np.array(range(1900,2020,10)) - 1900
population = 1000 * np.array([ 75995, 91972, 105711, 123203, 131669, 150697,
179323, 203212, 226505, 249633, 281422, 308746])
for (d,p) in zip(date, population):
print(d, ’:’, p)

(Notice that we are writing the date as “years since 1900.” How come? It turns out to make the
fitting computation more stable. We may return to this in the next homework.)

la. Express the problem of fitting a straight line of the form
p=xo+ T1d
to the data as a linear least squares problem
Az = b

where 2 = (x9,21)7 is the vector of coefficients of the line. (The answer to this question consists
just of the 12-by-2 matrix A and the vector b.)

1b. Solve the least squares problem in (la) for x in two different ways: First, use the QR
factorization of A. Second, use the scipy routine npla.lstsq(). (This uses either QR or SVD
under the hood, but it has more bells and whistles; see the Python help for the function. You’ll
need to give it an extra argument rcond=None, and the solution it returns is a Python tuple whose
first element is z.) Verify that the two x vectors are (nearly) the same. Make a plot that shows
the original population data as circles, and the least squares fit as a line.

1c. Use z to compute the US population in the year 2020, as predicted by the straight-line fit.
1d. Express the problem of fitting a quadratic polynomial of the form
p=ux9+x1d+ Tod?
to the data as a linear least squares problem
Az =~ b

where x = (zg,21,72)7 is the vector of coefficients of the polynomial. This time the matrix A
will be 12-by-3. Again, solve the least squares problem (using your choice of QR factorization or



npla.lstsq() but not both), make a plot of the resulting parabola, and use the new x to predict
the 2020 population.

le. Revise the code you used in (1d) to take the polynomial degree as a parameter. Repeat
the fitting, plotting, and prediction for polynomials of degrees 3, 4, ..., 8. (Turn in your plots and
the values of your predictions for this part, but not your Python code.) What do you notice about
the last few predictions?

2. These questions are all about IEEE standard 64-bit floating-point arithmetic, which is behind
both numpy’s float64 type and C’s double type. You can use fprint() from lecture 10 to see
the actual bits that represent any number. Recall that one hexadecimal digit stands for 4 bits.

2a. Machine epsilon, or just € for short, is defined as the largest floating-point number x such
that x + 1 = 1 in floating-point arithmetic. The experiment we did in class showed that € is
approximately 10716, which is why we say that IEEE floating-point can be accurate to about 16
decimal digits.

What is the exact value of €? (Your answer should be an exact arithmetic expression, not a
decimal expansion.) What is the 16-digit hex representation of € in the IEEE standard? How close
is € to 107167

2b. What is the 16-digit hex representation of 1/e? What is its approximate value in base 107

2c. What is the largest non-infinite positive number that can be represented exactly in IEEE
floating-point? Give your answer three ways: As an exact arithmetic expression, as the 16-hex-digit
IEEE representation, and as an approximate value in base 10. (Hint: Consider the largest possible
value of the 11-bit exponent field in the IEEE standard, but remember that value is reserved to
represent “infinity”.)

2d. A common mistake some people make (but not you!) is to think that e is the smallest
positive floating-point number. It’s not, by a long shot. Consider for example z = €'0. What is
the approximate value of x in base 107 Is x an exact floating-point number? If so, give its IEEE
16-hex-digit representation; if not, give an IEEE 16-hex-digit representation of a floating-point
number as close to x as you can.

2e. How many different floating-point numbers x are there with 1 < z < 27 How many with
4096 < x < 81927 How many with 1/64 < z < 1/327?

2f. Standard 64-bit integer arithmetic (such as int64_t in C) uses twos complement to represent
integers from roughly —253 to 263, In this system, the number of negative integers is different from
the number of positive integers. Why? Is the number of negative IEEE floating-point numbers
different from the number of positive IEEE floating-point numbers? Why or why not?

3. For this problem, you will want to read the article “Tearing apart Google’s TPU 3.0 Al
coprocessor” (linked from the lecture 10 class notes), especially the section “TPU Chips” that
starts on page 8.

The 1985 TEEE floating-point standard specifies a 16-bit version and a 32-bit version as well
as the ubiquitous 64-bit version. The 16-bit version was never used much, because most scientific
modeling requires higher precision. Recently, though, 16-bit floating-point has become popular in
machine learning applications, because the weights in a neural network don’t need to be determined
very precisely.

IEEE standard 16-bit floating-point uses 1 bit for the sign, 5 bits for the exponent, and 10 bits
for the mantissa. However, when Google developed its TPU (“Tensor Processing Unit”) chip for



machine learning, it used a different 16-bit format that it calls “bfloat”, with 1 bit for the sign, 8
bits for the exponent, and 7 bits for the mantissa.

3a. How many different floating-point numbers z are there with 1 < x < 2 in IEEE 16-bit
floating-point? In bfloat?

3b. Assume that both IEEE 16-bit and bfloat treat exponents the same way IEEE 64-bit does,
with the largest exponent reserved for infinity and all the exponents shifted to represent about the
same number of negative exponents as positive exponents. (I don’t actually know whether this is
true for bfloat.) What is the largest non-infinite positive number that can be represented exactly
in IEEE 16-bit floating-point? In bfloat? Give your answers both as exact arithmetic expressions
and as approximate base-10 numbers.

3c. Name one advantage of bfloat over IEEE-16, and one advantage of IEEE-16 over bfloat.

4. Recall from lecture (or NCM section 2.9) the definition of the condition number x(A) of a

matrix. Let
1 0 10
A(o 1000) and B<1 o)'

4a. What IEEE 64-bit floating-point number represents x(A)? Give your answer both as a
regular number and as the 16-hex-digit IEEE representation.

4b. What IEEE 64-bit floating-point number represents x(B)? Give your answer both as a
regular number and as the 16-hex-digit IEEE representation.

5. Consider each of the following Python loops. For each loop, answer: How many iterations
does it do before halting? What are the last two values of z it prints (both as decimals printed
by Python, and as IEEE standard 16-hex-digit representations)? Explain in one sentence what
property of the floating-point system the loop’s behavior demonstrates.

5a.

x=1.0

while 1.0 + x > 1.0:
x=x/ 2.0
print(x)

5b.

x=1.0

while x + x > x:
x =2.0 % x
print(x)

5c.

x=1.0

while x + x > x:
x=x/2.0
print(x)



