
CS 111 (S19): Homework 4

Due by 6:00pm Tuesday, April 30

NAME and PERM ID No.: Gaucho Olé, 1234567 (replace with yours)

UCSB EMAIL: GauchoOle@ucsb.edu (replace with yours)

Note: In this homework, you’ll be using a few of the functions I introduced in lecture, like
LSolve, USolve, the temperature setup, etc. These can all be found in our shared files GitHub
repository of ”Useful Files” found here (link).

1. The temperature problem models our cabin in the woods in two dimensions, but most
modern scientific simulations are done in three dimensions. Here you will create the matrix that
corresponds to a 3-D version of the temperature problem. The “cabin” is now the unit cube. As
before, we will discretize the interior by dividing it into k points in each dimension, but now there
are k3 points in all rather than k2. The partial differential equation still leads to the approximation
that the temperature at any given point is the average of the temperatures at the neighboring
points, but now there are 6 neighbors, with 2 in each dimension.

Using the routine make A(k) from Temperature.ipynb as a model, write a routine make A 3D(k)

that returns the k3-by-k3 matrix A for the 3D version of the temperature problem. This matrix
expresses the fact that, in a 3D k-by-k-by-k grid, each interior point has a temperature that is the
average of its 6 neighbors (left, right, up, down, in, out). The diagonal elements of A are all equal
to 6, and the off-diagonal elements are either 0 or −1. Most of the rows of A have 7 nonzeros.

Here below, for debugging, is the correct matrix for k = 2. I converted it to dense for printing—
you should also print it out as sparse, and indeed for k > 2 it’s going to be too large to see what’s
going on in the dense matrix anyway.

[In:]

k = 2

A = make_A_3D(k)

print(’k:’, k)

print(’dimensions:’, A.shape)

print(’nonzeros:’, A.size)

#print(’A as sparse matrix:’); print(A)

print(’A as dense matrix:’); print(A.todense())

[Out:]

k: 2

dimensions: (8, 8)

nonzeros: 32

A as dense matrix:

[[ 6. -1. -1. 0. -1. 0. 0. 0.]

[-1. 6. 0. -1. 0. -1. 0. 0.]

[-1. 0. 6. -1. 0. 0. -1. 0.]

[ 0. -1. -1. 6. 0. 0. 0. -1.]

[-1. 0. 0. 0. 6. -1. -1. 0.]

[ 0. -1. 0. 0. -1. 6. 0. -1.]

[ 0. 0. -1. 0. -1. 0. 6. -1.]

[ 0. 0. 0. -1. 0. -1. -1. 6.]]
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https://github.com/ucsb-cs111/s19-lecture-files/tree/master/UsefulFiles


Print out your matrix for k = 2 and k = 3 as a check that it’s correct. Also use plt.spy(A) to
make a spy plot of the nonzero structure for k = 4 or 5 (you may want to zoom in on the plot to
see all the structure).

To complete a realistic simulation you would also write a routine make b 3D(k) to compute the
right-hand side b. For this problem, you don’t have to do that; for the experiments in Problem 2
you can just use np.random.rand() to generate a random b.

Note: When you finish, submit your code of make A 3D(k) to Gradescope. The file name must
be make A 3D.py. The function name must be make A 3D. A skeleton code file can be found in
04.23 lecture files.

2. Now you will experiment with solving At = b using various solvers from class and from
numpy. For this problem, you should use the 3-D version of the temperature matrix from Problem
1. (You can get partial credit by using the 2-D temperature matrix from the class instead.) You
can use a randomly chosen right-hand side vector b.

Experiment with solving At = b for the temperature t, for various values of k, using five different
solvers:

• The CGsolve() conjugate gradient solver, from class. (You can vary the arguments tol and
max iters to make it find a more accurate solution.)

• The Jsolve() Jacobi solver, also from class. (Again you can vary tol and max iters.)

• The scipy sparse conjugate gradient solver spla.cg().

• The scipy sparse LU solver spla.spsolve().

• The LUsolve() dense LU solver from class. (For this, you will have to use the dense form of
A that you get from A.todense(). Warning! This will use too much memory if k gets very
big at all.)

For each solve, measure the run time and also the relative residual norm. Which solvers are more
accurate? Which are faster? How do the answers to these questions change as you change k?

Warning: Start with very small values of k, and be cautious as you increase k! The matrices
get big in a hurry. Different solvers will fall over for different values of k; try to see how big a value
of k each solver can handle with at most 30 seconds of compute time.
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https://github.com/ucsb-cs111/s19-lecture-files/blob/master/04.23/make_A_3D.py


3. Let

A =

 4 −1 −1
−1 4 −1
−1 −1 4


and let b = (15,−3, 12)T .

3a. Use the scipy Cholesky factorization routine linalg.cholesky() to compute the triangu-
lar Cholesky factor of A. (Either upper or lower triangular is fine, but just compute one of them.)
Verify that the answer is correct by multiplying the factor by its transpose and comparing with A.
Then use Usolve() and/or Lsolve() to compute the solution x to Ax = b from the Cholesky factor
(without calling any other factorization routine). Show the Jupyter/Python input and output for
your computations.

3b. Use the scipy QR factorization routine linalg.qr() to compute the two matrices (or-
thogonal and upper triangular) that constitute the QR factorization of A. Verify that the answer
is correct by multiplying the factors and comparing with A. Then use Usolve() and/or Lsolve()
to compute the solution x to Ax = b from the QR factors (without calling any other factorization
routine). Show the Jupyter/Python input and output for your computations.

4. How do you define an orthogonal matrix?
Which of the following matrices are orthogonal? (Don’t show your work, just give the answer.)

A =

(
0 1
1 0

)
, B =

(
1 0
0 −1

)
, C =

(
2 0
0 1/2

)
, D =

( √
2/2

√
2/2

−
√

2/2
√

2/2

)
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